

ТЕХНИЧЕСКИЕ ДАННЫЕ

ROTOR H-EC

ROTOR H-EC

Коммерчекий вентиляционный агрегат с двойным потоком и высокой эффективностью рекуперации.

ОПИСАНИЕ

Оборудован роторным теплообменником (рекуператором) из алюминия (сертифицированный Eurovent) и вентиляторами с ЕС двигателями и назад загнутыми лопастями. Эффект байпаса, полученный при временной остановке вращающегося рекуператора, позволяет использовать установку в автоматическом режиме свободного охлаждения (или свободного нагрева).

СТРУКТУРА

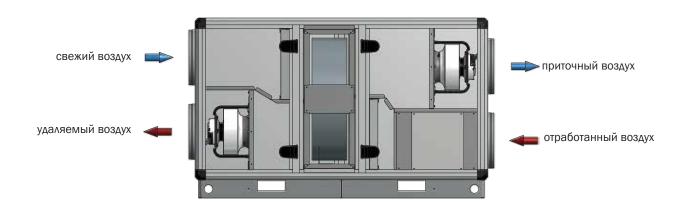
ROTOR H-EC изготавливается с использованием профилированной экструдированной алюминиевой рамы и сэндвич-панелей толщиной 36 мм, изолированных в пенополиуретане. Панели и внутренние части изготавливаются в Aluzinc, материал, который обеспечивает высокую прочность против коррозии и окисления. Пара панелей с шарнирным отверстием облегчает доступ к фильтрам (F7 для приточного воздуха и М5 для вытяжного).

ROTOR H-EC подготовлен для установки на открытом воздухе (с дополнительной защитной крышей) и в помещении; он поставляется с алюминиевыми основаниями высотой 100 мм для установки на пол. Доступный в 4 размерах, он может быть оснащен системами последующей обработки воздуха (внутри устройства), такими как: теплообменник горячей / холодной воды, электрический нагреватель или DX теплообменник. Опционально также доступны с вращающимся рекуператором с постоянной скоростью или переменной скоростью.

ABTOMATUKA

ROTOR H-EC был снабжен электрической коробкой и системой управления; он доступен в версии, оснащенной контроллером EVO-PH, и версией, оснащенной контроллером EVOD-PH-IP, подготовленной для полной интеграции в системы домашней автоматизации (протокол Modbus с Ethernet-соединением или, по запросу, с добавлением соединения RS485). Новая версия наших систем управления позволяет очень легко и быстро перейти от одной системы управления к другой, даже после установки с единственной заменой удаленной панели.

Элемент управления EVO-PH имеет цветной интерфейс с сенсорным экраном с подсветкой и интуитивным просмотром рабочего состояния устройства. Он позволяет точно регулировать скорость вентилятора и имеет еженедельный график для автоматического управления вентиляторами. Он может управляться внешним переключателем для активации функции бустера, автоматически регулировать расход воздуха, если подключен к зонду качества воздуха, может управлять любыми аксессуарами для обработки воздуха, он автоматически управляет байпасом и предотвращает замораживание теплообменника путем управления скоростью вентиляторов или, если установлено, электрическим резистором предварительного нагрева (дополнительная принадлежность вне машины); сигнализирует пользователю о необходимости замены фильтров (состояние засорения фильтров контролируется парой реле давления, поставляемых в качестве стандарта). С добавлением дополнительных принадлежностей (комплект СОР и комплект CAV, установленный на канале) вы можете управлять вентиляционной машиной в режиме постоянного давления или постоянного расхода.

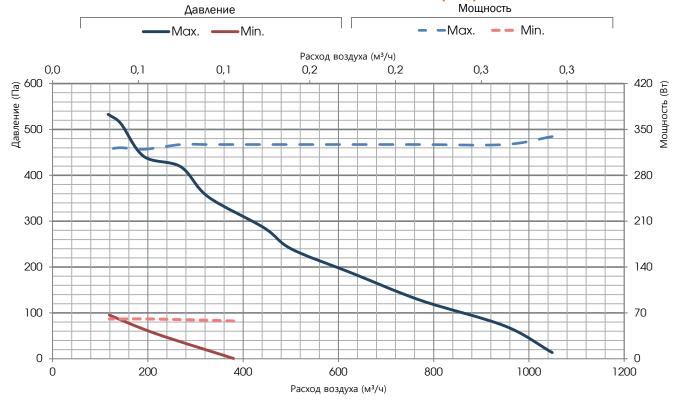

Элемент управления EVOD-PH-IP имеет те же характеристики, что и версия EVO-PH, с добавлением протокола связи Modbus, который позволяет полностью управлять машиной с помощью программного обеспечения для наблюдения системы домашней автоматизации. Внедренный веб-сервер позволяет взаимодействовать с машиной даже с интернет-браузером подключенным к устройству (даже с удаленного компьютера) к домашней системе автоматизации, в которую подключен аппарат.

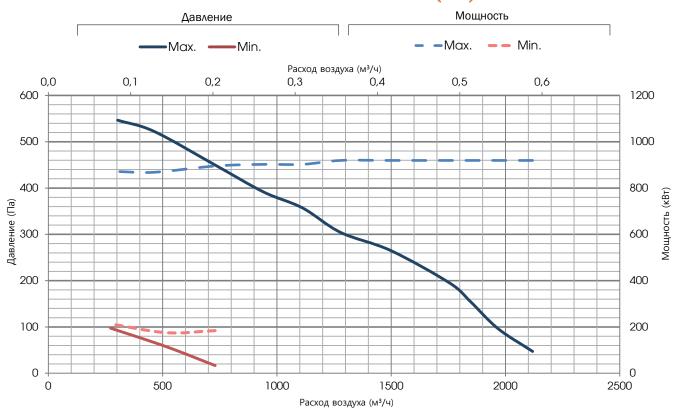
АКСЕСУАРЫ

ROTOR H-EC может быть оснащен другими аксессуарами, такими как:

- . R.H. зонд, CO2 или CO2 / VOC
- . Комплект постоянное давление или постоянный расход.
- . защитная крыша для наружной установки
- . решетки и демпфер

Для более полного ознакомления с характеристиками панелей управления, пожалуйста, ознакомьтесь с конкретными руководствами

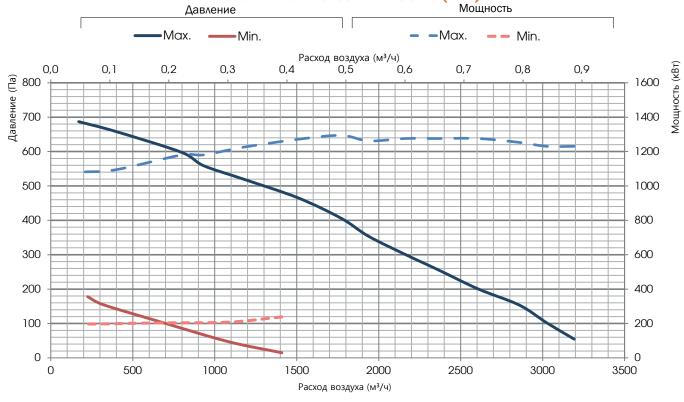

Роторный теплообменник из алюминия, изготовленный COVENT, участвует в программе сертификации Eurovent

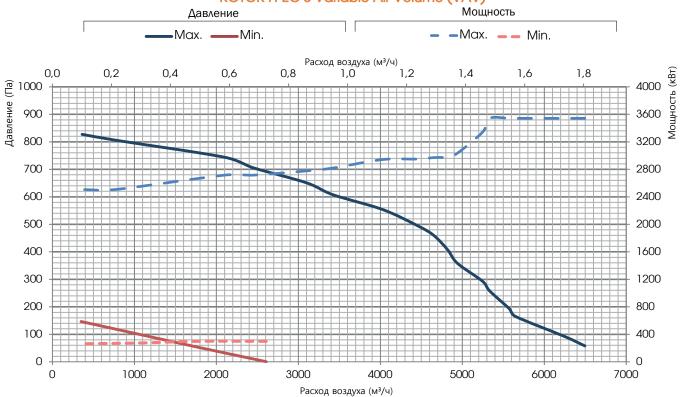

ПРОИЗВОДИТЕЛЬНОСТЬ (UNI EN 13141-7)

Устройство должно быть правильно подобрано: UTEK рекомендует использование только в соответствии с диаграммой производительности, показанной в этом каталоге. Заявленные характеристики соответствуют ЧИСТЫМ фильтрам и гарантируются ТОЛЬКО при использовании оригинальных фильтров UTEK с низким перепадом давления

ROTOR H-EC 1 Variable Air Volume (VAV)

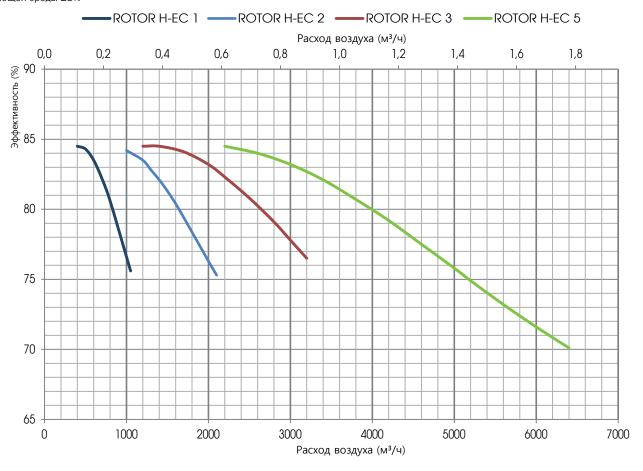
ROTOR H-EC 2 Variable Air Volume (VAV)




ПРОИЗВОДИТЕЛЬНОСТЬ (UNI EN 13141-7)

Устройство должно быть правильно подобрано: UTEK рекомендует использование только в соответствии с диаграммой производительности, показанной в этом каталоге. Заявленные характеристики соответствуют ЧИСТЫМ фильтрам и гарантируются ТОЛЬКО при использовании оригинальных фильтров UTEK с низким перепадом давления

ROTOR H-EC 3 Variable Air Volume (VAV)


ROTOR H-EC 5 Variable Air Volume (VAV)

ЭФФЕКТИВНОСТЬ РЕКУПЕРАЦИИ ТЕПЛА (ощутимая эффективности)

Значения приведены при следующих условиях (UNI EN 13141-7): Tbs наружного воздуха $5\,^{\circ}$ C; U.R. снаружи 72%; Tbs окружающей среды $25\,^{\circ}$ C; U.R. окружающей среды 28%

ЭКОДИЗАЙН

MODELLO	n t_nvru (%)	q nom (m³/s)	$\Delta \mathbf{p}$ s,ext (Pa)	P (kW)	SFPint (W/(m³/s))	SFPint_lim 2016 (W/(m³/s))	SFPint_lim 2018 (W/(m³/s))	FACE VELOCITY (m/s)	$\Delta \mathbf{p}$ s,int (Pa)	N Fan (%)	* Internal LEAKAGE (%)	* External LEAKAGE (%)
ROTOR H-EC 1	83,5	0,17	200	0,33	1035	1669	1389	0,98	588	56,0	-	7,5
ROTOR H-EC 2	79,1	0,48	200	0,92	1074	1490	1210	1,51	668	63,0	-	3,5
ROTOR H-EC 3	80,2	0,72	200	1,28	969	1487	1207	1,81	615	56,7	-	3,4
ROTOR H-EC 5	76,9	1,32	430	2,98	1002	1299	1019	1,88	787	64,6	-	3,4

^{*} Процент номинального расхода

ηt_nrvu тепловая эффективность

SFPint внутренняя удельная мощность вентиляторов

 $\Delta p_{s,ext}$ номинальное внешнее давление

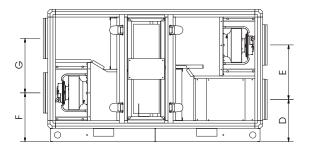
 $\Delta p_{s,int}$ внутреннее падение давления

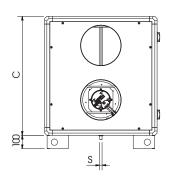
ЗНАЧЕНИЯ В СООТВЕТСТВИИ С UNI EN 1886: 2008

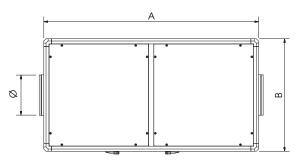
УСТАНОВКА	ПРОЧНОСТЬ КОРПУСА	утечки КОРПУСА	КЛАСС ФИЛЬТРА	ТЕПЛОПЕРЕДАЧА	ТЕРМИЧЕСКИЙ МОСТ
ROTOR H-EC 1	D1 (M)	L3 (M)	F7 (M)	T4 (M)	TB3 (M)
ROTOR H-EC 2					
ROTOR H-EC 3	D1 (M)	L3 (M)	F7 (M)	T4 (M)	TB3 (M)
ROTOR H-EC 5	D1 (M)	L3 (M)	F7 (M)	T4 (M)	TB3 (M)

УРОВЕНЬ ШУМА Lw Уровень звуковой мощности, принятый в соответствии с UNI EN ISO 3747 - класс 3

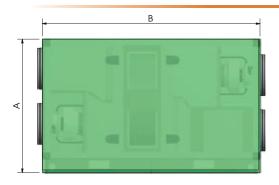
				ШУМ	ОТ КОРПУСА	(дБ)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 1	Lw Vmax	69,5	64,0	55,3	44,4	40,3	30,7	21,9	58,9
				ШУМ	Β ΚΑΗΑΛΕ (Γ	ц)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 1	Lw Vmax	69,5	69,1	56,9	52,8	51,6	45,4	40,4	63,0
				ШУМ	ОТ КОРПУСА	(дБ)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 2	Lw Vmax	71,8	69,1	57,0	53,8	45,8	37,4	28,7	63,1
				ШУМ	Β ΚΑΗΑΛΕ (Γ	ц)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	$L_{w}^{-}dB(A)$
ROTOR H-EC 2	Lw Vmax	73,9	75,1	64,2	63,3	55,8	50,6	44,9	69,6
				ШУМ	ОТ КОРПУСА	A (дБ)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 3	Lw Vmax	64,4	67,1	60,4	59,9	52,4	45,0	34,2	64,1
				ШУМ	Β ΚΑΗΑΛΕ (Γ	ц)			
·		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 3	Lw Vmax	74,8	76,2	73,1	69,0	61,7	54,4	50,7	74,2
				ШУМ	ОТ КОРПУСА	Л (ДБ)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 5	Lw Vmax	77,3	77,6	66,5	69,0	60,8	50,9	42,6	73,2
				ШУМ	Β ΚΑΗΑΛΕ (Γ	ц)			
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	L _w dB(A)
ROTOR H-EC 5	Lw Vmax	80,2	83,5	70,6	71,8	63,8	54,8	48,6	77,6

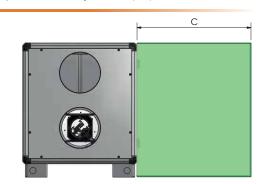

ЭЛЕКТРИЧЕСКИЕ ДАННЫЕ


		Е	ЕНТИЛЯТОРЫ			УСТАНОВКА R	OTOR H-EC
	Мощность (Вт)	Питание	Ток тах.(А)	Класс изоляции	Питание	Ток тах.(А)	Класс изоляции
ROTOR H-EC 1	2 x 170	230V 50/60 Hz 1F	2 x 1,4	IP54 CLASS B	230V 50 Hz 1F	3,0	IP 20
ROTOR H-EC 2	2 x 448	230V 50/60 Hz 1F	2 x 2,8	IP54 CLASS B	230V 50 Hz 1F	6,0	IP 20
ROTOR H-EC 3	2 x 715	230V 50/60 Hz 1F	2 x 3,1	IP54 CLASS B	230V 50 Hz 1F	7,0	IP 20
ROTOR H-EC 5	2 x 1850	400V 50/60 Hz 3F	2 x 2,9	IP54 CLASS B	400V 50 Hz 3F	7,2	IP 20

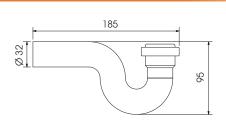


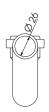
РАЗМЕРЫ (мм) ВЕС (кг)


УСТАНОВКА				Pa	змеры	(мм)				
	Α	В	С	D	Е	F	G	S	Ø	Вес (кг)
ROTOR H-EC 1	1680	680	930	330	419	388	419	1/2"	315	187
ROTOR H-EC 2	1680	880	930	330	426	381	426	1/2"	315	269
ROTOR H-EC 3	1680	1080	1130	372	588	372	588	1/2"	400	338
POTOR H-FC 5	1980	1280	1330	470	645	470	645	1/2"	500	466



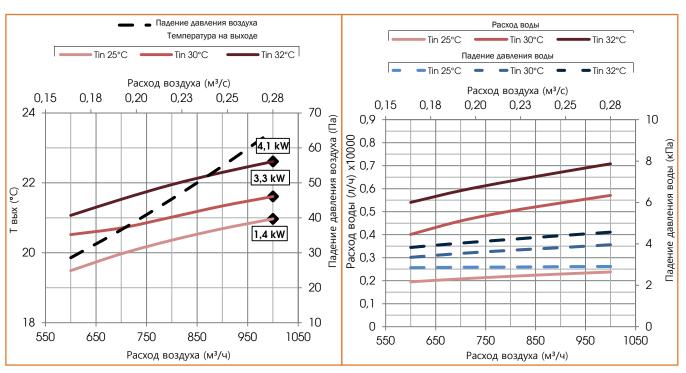
ИНСТАЛЯЦИЯ ГОРИЗОНТАЛЬНЫЙ НАПОЛЬНЫЙ Минимальное требуемое пространство для обслуживания (мм)

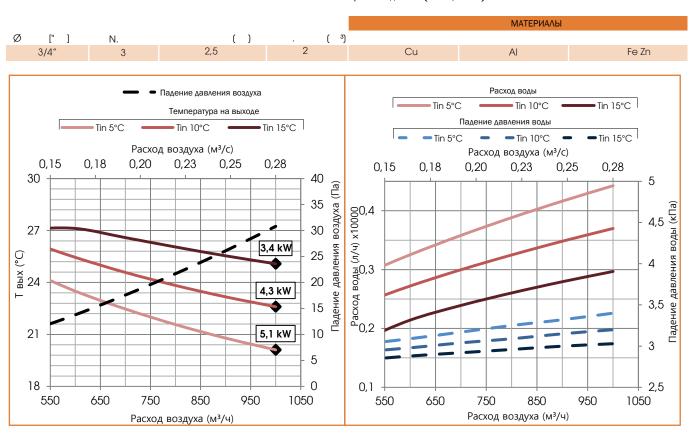




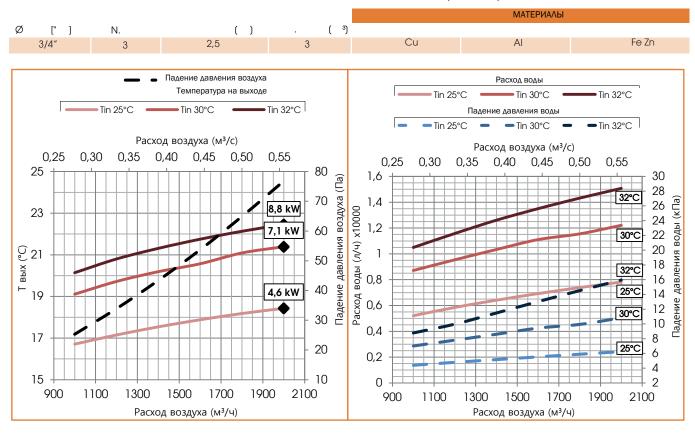
УСТАНОВКА	Разм	еры (мм)	
	Α	В	С
ROTOR H-EC 1	1030	1680	1000
ROTOR H-EC 2	1030	1680	1200
ROTOR H-EC 3	1230	1680	1400
ROTOR H-FC 5	1430	1980	1600

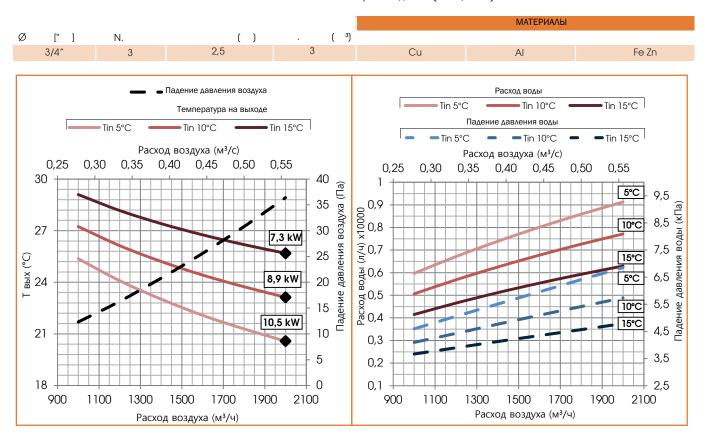
СТАНДАРТНЫЙ СИФОН (ММ)

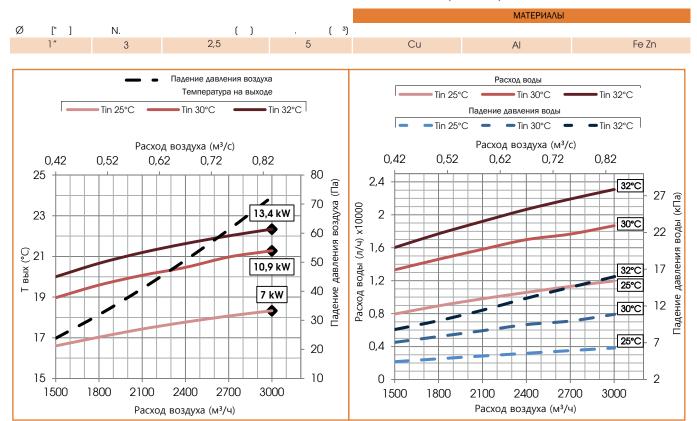


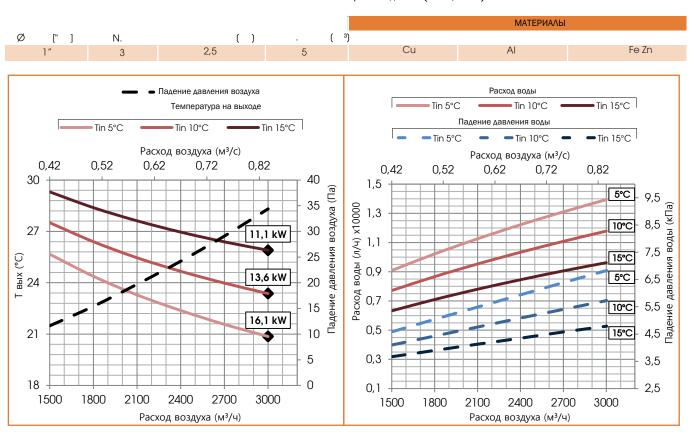


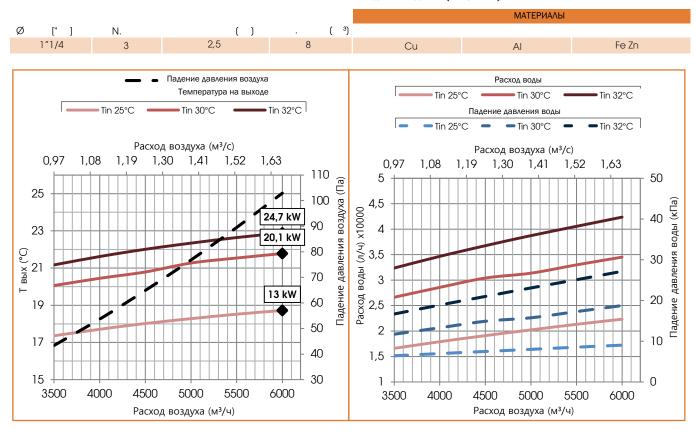
Теплообменник охлаждения водяной (7°C/12°C)

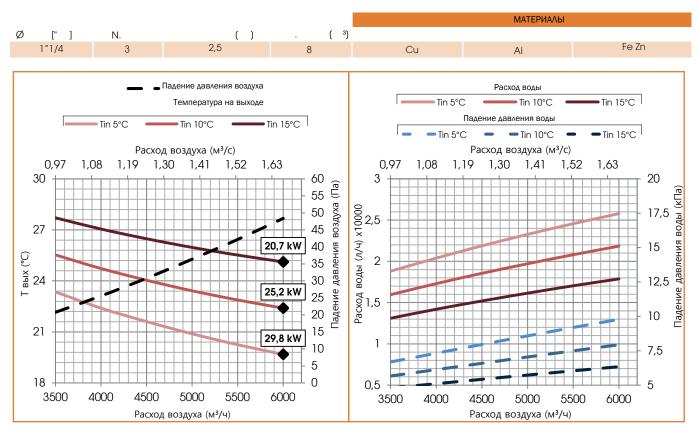





Теплообменник охлаждения водяной (7°C/12°C)




Теплообменник охлаждения водяной (7°C/12°C)



Теплообменник охлаждения водяной (7°C/12°C)

DX теплообменник ROTOR 1

			ТЕПЛООБМІ	ЕННИК ПРЯМОГО	РАСШИРЕНИЯ (R410A)	ТЕХНИЧЕСКИЕ ДАННЫЕ	
Pa	сход воздуха (м³/ч)	Твх (С°)	R.H вх (%)	() T (°C)	R.H: (%)	()
	1000	28	68	6,4	19	92	86
Ø	()	()	Nr.	(3)	Т исп (°С)	Т жидк. (°С)	
	22-16	2,5	3	2	5	50	

DX теплообменник ROTOR 2

			ТЕПЛООБМІ	ЕННИК ПРЯМОГО	РАСШИРЕНИЯ (R410A)	ТЕХНИЧЕСКИЕ ДАННЫ	
Pacx	код воздуха (м³/ч)	Твх (С°)	R.H вх (%)	Мощность(кВт)	Твых (°С)	R.H: вых (%)	Падение давления (Па)
	2000	28	68	12	20	92	114
Ø	()	()	Nr.	(3)	Т исп (°С)	Т жидк. (°C)	
	28-16	2,5	3	3	5	50	

DX теплообменник ROTOR 3

			ТЕПЛООБМІ	ЕННИК ПРЯМОГО	РАСШИРЕНИЯ (R410A)	ТЕХНИЧЕСКИЕ ДАННЫЕ	
Pacxo	од воздуха (м³/ч)	Твх (С°)	R.H вх (%)	()	T (°C)	R.H: (%)	()
	3000	28	50	14	17	82	103
Ø	()	()	Nr.	(3)	Т исп (°С)	Т жидк. (°C)	
	28-16	2,5	3	4	4	50	

DX теплообменник ROTOR 5

	ТЕПЛООБМ	ЕННИК ПРЯМОГО І	РАСШИРЕНИЯ (R410A)	ТЕХНИЧЕСКИЕ ДАННЫЕ	
Твх (С°)	R.H вх (%)	Мощность (кВт)	Твых (°С)	R.H: вых (%)	(
29	67	29	21	88	136
Шаг ребра (мм)	Nr. Рядов	Вн.объем. (дм³)	Т исп (°С)	T жидк. (°C)	
2,5	3	7	5	50	
	29	Твх (C°) R.Н вх (%) 29 67 Шаг ребра (мм) Nr. Рядов	Твх (С°) R.Н вх (%) Мощность (кВт) 29 67 29 Шаг ребра (мм) Nr. Рядов Вн.объем. (дм³)	Твх (С°) R.Н вх (%) Мощность (кВт) Твых (°С) 29 67 29 21 Шаг ребра (мм) Nr. Рядов Вн.объем. (дм³) Т исп (°С)	29 67 29 21 88 Шаг ребра (мм) Nr. Рядов Вн.объем. (дм³) Т исп (°C) Т жидк. (°C)

Электрический нагрев

	ПРЕД-П	ОСТ ЭЛЕКТРИЧЕСКИЙ НАГРЕ	В ТЕХНИЧЕСКИЕ ДАННЫЕ	
Модель	Источник питания	Мощность [кВт]	Ток [А]	N. стуненей
ROTOR 1	230V, 50Hz,1F	4	17,4	1
ROTOR 2	230V, 50Hz,1F	6	26,1	1
ROTOR 3	400V, 50Hz,3F	8	11,6	1
ROTOR 5	400V, 50Hz,3F	16	23,2	1

Обрати особое внимание - для других батарей ПРЕД или ПОСТ см. Техно-список АКСЕССУАРОВ

В	у Идентификатор модели производителя	ROTORH-EC 1 VAV EVO-PH SH	ROTORH-EC 2 VAV EVO-PH SH	ROTORH-EC 3 VAV EVO-PH SH	ROTORH-EC 5 VAV EVO-PH SH
O	Заявленная типология	UVNR / UVB	UVNR / UVB	UVNR / UVB	UVNR / UVB
		Многоскоростные	Многоскоростные	Многоскоростные	Многоскоростные
ш		Аругие	Аругие	Аругие	Аругие
ш	- Тепловая эффективность рекуперации тепла [%]	83,5	79,1	80,2	6'92
O		0,166	0,483	0,725	1,32
I	1 Эффективная входная электрическая мощность [кВт]	0,33	0,92	1,28	2,98
	SFPint [BT/[M³/c]	1033	1073	896	1002
	Скорость потока при расчетном объеме [м/с]	1,0	1,5	1,8	1,88
\prec		200	200	200	430
_	Внутренний перепад давления компонентов вентиляции [Па]	588	899	615	787
Σ	Дополнительно: внутреннее падение давления не вентилируемых компонентов				,
Z	Статическая эффективность вентиляторов, используемых в соответствии с Постановлением (EU) № 327/2011 [%]	26,0	63,0	56,7	64,6
	Заявленная максимальная внешняя скорость утечки из корпуса вентиляционных агрегатов [%]	7,5	3,5	3,4	3,4
0	Объявлена максимальная внутренняя скорость утечки Авунаправленных вентиляционных установок или перенос (только для регенеративных теплообменников) [%]	0'0	0,0	0'0	0′0
Ф	Энергоэффективность, предпочтительно энергетическая классификация, фильтров (заявленная информация о рассчитанном годовом потреблении энергии)	F7/M5	F7/M5	F7/M5	F7/M5
Ø	Положение и описание предупреждения визуального фильтра для RVU, На дисплее системы управления сигнализируется предупреждение фильтра: появится мигающая надпись «DirtyFilters». «Чтобы сохранить предназначенных для использования с фильтрами, включая текст, указывающий на важность регулярных изменений фильтра для производительности и энергоэффективности блока	J, На дисплее системы управления сі энергоэффективность NRVU, реком	На дисплее системы управления сигнализируется предупреждение фильтра: появится мигающая надпись «DirtyFilters». «Чтобы со энергозффективность NRVU, рекомендуется заменять фильтры, когда сигнализируется». Расположен вблизи инспекции фильтров	ьтра: появится мигающая надпись « игнализируется». Расположен вблиз	·DirtyFilters». «Чтобы сохранить и инспекции фильтров
	R Уровень звуковой мощности корпуса (LWA) [дБ]	59	63	8	73
- 0)	S Интернет-адрес с технической информацией		wwwa	wwwair-streamcom.ua	


Уважаемый клиент

Благодарим за внимание к продукту UTEK, спроектированному и изготовленному для обеспечения реальных значений для пользователя: качества, безопасности и экономии при работе.

UTEK S.r.l.

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL ISO 9001 COMPANY WITH ENVIRONMENTAL SYSTEM CERTIFIED BY DNV GL ISO 14001

the Dealer ROTOR H-EC_2016_3_EN

